Kernel Density-Based Linear Regression Estimate

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel Density Based Linear Regression Estimate

For linear regression models with non-normally distributed errors, the least squares estimate (LSE) will lose some efficiency compared to the maximum likelihood estimate (MLE). In this article, we propose a kernel density based regression estimate (KDRE) that is adaptive to the unknown error distribution. The key idea is to approximate the likelihood function by using a nonparametric kernel den...

متن کامل

Evolutionary kernel density regression

The Nadaraya–Watson estimator, also known as kernel regression, is a density-based regression technique. It weights output values with the relative densities in input space. The density is measured with kernel functions that depend on bandwidth parameters. In this work we present an evolutionary bandwidth optimizer for kernel regression. The approach is based on a robust loss function, leave-on...

متن کامل

Strong Consistency of Kernel Regression Estimate

In this paper, regression function estimation from independent and identically distributed data is considered. We establish strong pointwise consistency of the famous Nadaraya-Watson estimator under weaker conditions which permit to apply kernels with unbounded support and even not integrable ones and provide a general approach for constructing strongly consistent kernel estimates of regression...

متن کامل

A Kernel Density Estimate-Based Approach to Component Goodness Modeling

Intermittent fault localization approaches account for the fact that faulty components may fail intermittently by considering a parameter (known as goodness) that quantifies the probability that faulty components may still exhibit correct behavior. Current, state-of-the-art approaches (1) assume that this goodness probability is context independent and (2) do not provide means for integrating p...

متن کامل

Classification via kernel regression based on univariate product density estimators

We propose a nonparametric discrimination method based on a nonparametric Nadaray-Watson kernel regression type-estimator of the posterior probability that an incoming observed vector is a given class. To overcome the curse of dimensionality of the multivariate kernel density estimate, we introduce a variance stabilizing approach which constructs independent predictor variables. Then, the multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Statistics - Theory and Methods

سال: 2013

ISSN: 0361-0926,1532-415X

DOI: 10.1080/03610926.2011.650269